Joint Generative-Discriminative Aggregation Model for Multi-Option Crowd Labels

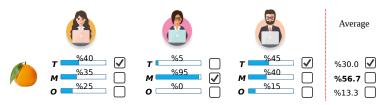
Kamran Ghasedi Dizaji[†], Yanhua Yang[‡], Heng Huang[†]

[†]Electrical and Computer Engineering Department, University of Pittsburgh, USA [‡]School of Electronic Engineering, Xidian University, China

WSDM 2018

Estimating True Labels from Noisy Crowd Labels

Non-experts, redundant labeling



Orange (O) vs. Mandarin (M)

Problem of aggregating crowd labels

- Crowd labels are often noisy and unreliable, since crowd workers are usually inexpert in the assigned tasks.
- To tackle this issue, each item is labeled multiple times by different workers. Our task is to **estimate the true labels** by **aggregating** these redundant crowd labels.

Single-option vs. multi-option crowd labels

Three crowd workers are asked to classify a figure as tangor (T), mandarin (M) or orange (O). Their single-option and multi-option crowd labels are shown with checked boxes and confidence bars respectively. The average score of multi-option labels correctly shows higher chance for mandarin, while the majority of single-option labels incorrectly suggests tangor as the truth.

Issue of single-option crowd labels

- Recent studies have shown that crowd workers cannot completely convey their non-deterministic beliefs with the single-option crowd labels!
- Flexible data collection mechanisms allow crowd workers to select multiple
 options for a question, or report their non-deterministic confidence level for
 the selected options.

Proposed Aggregation Models

Discriminative aggregation model

$CWMV_{\ell 1}$ objective function

$$\min_{\mathbf{w}, \mathbf{y}_i \geq 0, \mathbf{1}^T \mathbf{y}_i = 1} \quad \sum_{i=1}^N \| \mathbf{X}_i \mathbf{w} - \mathbf{y}_i \|_1 + \lambda_w \| \mathbf{w} \|_2^2$$

Joint Generative-Discriminative Aggregation Model $DS\text{-}CWMV_{\ell 1}$ objective function

$$\min_{\mathbf{w}, \mathbf{y}_i \geq 0, \mathbf{1}^T \mathbf{y}_i = 1, \boldsymbol{\nu}_j} \mathbf{KL}(p^{\boldsymbol{\nu}} || p_0^{\boldsymbol{\nu}}) - \sum_{ijck} x_{ijk} y_{ic} \log(\nu_{jck}) + \sum_{i=1}^N || \mathbf{X}_i \mathbf{w} - \mathbf{y}_i ||_1 + \lambda_w || \mathbf{w} ||_2^2$$

Notation

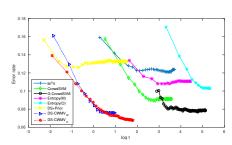
 $\mathbf{X}_i = [\mathbf{x}_{i1}, ..., \mathbf{x}_{iM}]^T$: crowd labels for the *i*-th item

 \mathbf{y}_i : truth for the *i*-th item

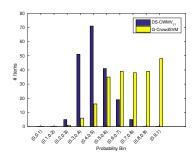
 ν_j : confusion matrix for the j-th worker (generative model parameter)

w: workers reliability weights (discriminative model parameter)

Evaluation on Single-Option and Multi-Option Crowd Datasets


	Model	Web Search	Age	RTE	Temp	Flowers	Average
baselines	MV	26.90	34.88	10.31	6.39	22.00	28.83
	IWMV	15.04	34.53	8.12	5.84	19.00	17.09
	$M^3 V$	12.74	33.33	7.88	6.06	13.50	15.43
	DS	16.92	39.62	7.25	5.84	13.00	18.69
	DS+Prior	13.26	34.53	[7.13]	5.84	13.50	15.80
	GLAD	19.30	35.73	7.00	[5.63]	13.50	16.20
	Entropy (M)	11.10	31.14	7.50	[5.63]	13.00	14.03
	Entropy(O)	10.40	37.32	-	-	-	17.76
	CrowdSVM	9.42	33.33	7.75	[5.63]	13.50	13.65
	$G ext{-}CrowdSVM$	7.99 ± 0.26	32.98 ± 0.36	7.67 ± 0.19	5.71 ± 0.33	$[12.10\pm1.07]$	12.78 ± 0.31
ours	$CWMV_{\ell 2}$	10.89	34.43	7.25	[5.63]	16.00	14.65
	$CWMV_{\ell,1}^{2}$	10.70	34.23	7.50	[5.63]	13.00	14.43
	DS-CWMV ₂	[7.58]	32.04	[7.13]	[5.63]	13.00	[12.32]
	DS - $CWMV_{\ell 1}$	6.78	[31.54]	7.00	5.41	10.00	11.65

Error rates (%) of crowdsourcing aggregation models on single-option crowdsourcing datasets.


	Model	Flag-Approval	Flag-Cumulative	Dog-Approval	Dog-Cumulative	Average
baselines	(soft) MV	21.67	20.83	8.98	8.98	12.90
	(soft) DS	22.50	20.83	10.16	9.76	13.70
	(soft) DS+Prior	20.00	19.17	8.98	8.59	12.23
	(soft) Entropy (M)	17.50	16.67	12.89	12.89	14.23
ours	$CWMV_{\ell 2}$	16.67	16.67	8.98	8.59	11.30
	$CWMV_{\ell 1}$	[11.67]	[10.83]	[8.59]	[8.20]	[9.31]
	DS-CWMV ₂	14.17	14.17	9.38	8.59	10.64
	$DS\text{-}CWMV_{\ell 1}^{-2}$	13.33	10.00	8.20	7.81	9.17

Error rates (%) of crowdsourcing aggregation models applied on multi-option crowd datasets.

Evaluation of Running Speed and Reliability of Truths

Convergence comparison of aggregation models on Web Search dataset.

Histogram of the truths for mispredicted items. The results belongs to $DS\text{-}CWMV_{\ell 1}$ and G-CrowdSVM on $Web\ Search\ dataset.$