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Motivations
Dealing with large-size and high-dimensional data, existing clustering algorithms suffer from different issues,
such as using inflexible hand-crafted features, shallow and linear embedding functions, non-joint embedding and
clustering processes and complicated clustering algorithms that require tuning hyper-parameters.
In this paper, we propose a new clustering model, called DEeP Embedded RegularIzed ClusTering (DEPICT ),
which adrress these issues by efficiently maping data into a discriminative embedding subspace and precisely
predicting cluster assignments. DEPICT generally

• consists of a multinomial logistic regression function stacked on top of a multi-layer convolutional autoencoder.
• employs a clustering objective function using relative entropy (KL divergence) minimization, regularized by

a prior for the frequency of cluster assignments.
• utilizes a joint learning framework to benefit from end-to-end optimization and eliminate the necessity for

layer-wise pretraining, by minimizing the unified clustering and reconstruction loss functions together and
trains all network layers simultaneously.

Architecture

Proposed Model and Algorithm
Notations: Let’s consider the clustering task of N samples, X = [x1, ...,xn], into K categories, where each
sample xi ∈ Rdx . Using an embedding function, we are able to map raw samples into the embedding subspace
Z = [z1, ..., zn], where each zi ∈ Rdz and dz � dx. Given the embedded features, we use a multinomial logistic
regression (soft-max) function pik = P (yi = k|zi,Θ) ∝ exp(θT

k zi) to predict the probabilistic cluster assignments.
Objective Function: In order to define our clustering objective function, we employ an auxiliary target vari-
able Q to refine the model predictions iteratively. To do so, we use Kullback-Leibler (KL) divergence KL(Q‖P)
to decrease the distance between the model predictions P and the target variables Q.
To avoid degenerate solutions, we also impose a regularization term to the target variables. Defining the empirical
label distribution of target variables as fk = P (y = k) = 1

N

∑
i qik, we are able to enforce our preference for having

balanced assignments by adding KL(f‖u) to the loss function, which conisders the uniform prior u for f .
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Algorithm 1: DEPICT Algorithm

1 Initialize Q using a clustering algorithm
2 while not converged do
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Optimization: An alternating (EM-like) learning approach
is utilized to optimize the objective function. In the expec-
tation step, we derive an approximate closed form solution
for estimating the target variables Q. In the maximization
step, the objective function is reduced to the standard cross
entropy loss function to update the network parameters.
Autoencoder Embedding: Deep embedding functions are
useful for capturing the non-linear nature of input data. How-
ever, they may overfit to spurious data correlations and get stuck in an undesirable local minima. To avoid this
overfitting problem, we design an autoencoder structures for clustering task, which has the reconstruction loss
functions between every encoder and decoder layers as data-dependent regularizations.
Moreover, we compute target variables Q using the clean pathway, and model prediction P̃ via the corrupted
pathway (See DEPICT architecture). Hence, the clustering loss function KL(Q‖P̃) forces the model to have
invariant features with respect to noise. In other words, the model is assumed to have a dual role: a clean model,
which is used to compute the more accurate target variables; and a noisy model, which is trained to achieve
noise-invariant predictions.

Experimental Results

Dataset MNIST-full MNIST-test USPS FRGC YTF CMU-PIE #
HPNMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC

K-means 0.500∗ 0.534∗ 0.501∗ 0.547∗ 0.450∗ 0.460∗ 0.287∗ 0.243∗ 0.776∗ 0.601∗ 0.432∗ 0.223∗ 0
N-Cuts 0.411 0.327 0.753 0.304 0.675 0.314 0.285 0.235 0.742 0.536 0.411 0.155 0
SC-ST 0.416 0.311 0.756 0.454 0.726 0.308 0.431 0.358 0.620 0.290 0.581 0.293 0
SC-LS 0.706 0.714 0.756 0.740 0.681 0.659 0.550 0.407 0.759 0.544 0.788 0.549 0
AC-GDL 0.017 0.113 0.844 0.933 0.824 0.867 0.351 0.266 0.622 0.430 0.934 0.842 1
AC-PIC 0.017 0.115 0.853 0.920 0.840 0.855 0.415 0.320 0.697 0.472 0.902 0.797 0
SEC 0.779∗ 0.804∗ 0.790∗ 0.815∗ 0.511∗ 0.544∗ - - - - - - 1
LDMGI 0.802∗ 0.842∗ 0.811∗ 0.847∗ 0.563∗ 0.580∗ - - - - - - 1

NMF-D 0.152∗ 0.175∗ 0.241∗ 0.250∗ 0.287∗ 0.382∗ 0.259∗ 0.274∗ 0.562∗ 0.536∗ 0.920∗ 0.810∗ 0
TSC-D 0.651 0.692 - - - - - - - - - - 2
DEC 0.816∗ 0.844∗ 0.827∗ 0.859∗ 0.586∗ 0.619∗ 0.505∗ 0.378∗ 0.446∗ 0.371∗ 0.924∗ 0.801∗ 1
JULE-SF 0.906 0.959 0.876 0.940 0.858 0.922 0.566 0.461 0.848 0.684 0.984 0.980 3
JULE-RC 0.913 0.964 0.915 0.961 0.913 0.950 0.574 0.461 0.848 0.684 1.00 1.00 3

DEPICT 0.917 0.965 0.915 0.963 0.927 0.964 0.610 0.470 0.802 0.621 0.974 0.883 0

Figure 1: Visualization of DEPICT embedding subspace for MNIST-full, MNIST-test, USPS and
CMU-PIE datasets.
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