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Challenges

•Unsupervised hashing methods either utilize shallow models with
hand-crafted features as inputs, or employ deep architectures for
obtaining both discriminative features and binary hash codes.
•The shallow hash functions suffer from hand-crafted features and
dimension reductions techniques, and may not capture the
non-linear similarities between real-world images due to their low
capacity.
•The unsupervised deep hash functions have not shown
satisfactory improvements against their shallow alternatives due
to overfitting problem in lack of any supervisory signals.

Contributions

•We propose a novel framework for unsupervised hashing model by
coupling a deep hash function and a generative adversarial
network.
•We introducing a new hashing objective resulting in minimum
entropy, uniform frequency, consistent, and independent hash bits
for real images, regularized by the adversarial and collaborative
loss functions on synthesized images.
•Achieving state-of-the-art results compared to alternative models
on information retrieval and clustering tasks.

HashGAN Objective Function

•General loss
Ltotal = Ladv + Lhash + Lcol

•Adversarial loss
max
D

Ex∼P (x)
[
log(D(x))

]
+ Ez∼P (z)

[
log(1−D(G(z))

]
•Hashing loss

min
E
−

N∑
i=1

K∑
k=1

tik log tik + (1− tik) log(1− tik)︸ ︷︷ ︸
minimum entropy bits

+
N∑

i=1

K∑
k=1
‖tik − t̃ik‖2

2︸ ︷︷ ︸
consistent bits

+
K∑

k=1
fk log fk + (1− fk) log(1− fk)︸ ︷︷ ︸

uniform frequency bits

+ ‖WL>

E WL
E − I‖2

2︸ ︷︷ ︸
independent bits

•Collaborative loss
min
E

Ez∼P (z)
[
‖E(G(z))− b′‖2

2
]

Figure 1: Visualization of HashGAN discriminative representations for a query set on
MNIST using TSNE projection. The real and synthesized data are indicated by colored
and gray circles respectively. Some of the synthesized images are randomly shown from
different parts of space.

Dataset CIFAR-10 MNIST

Su
pe
r.

Pr
et
ra
in

mAP (%) mAP@1000 (%) mAP (%) mAP@1000 (%)
Model 16 32 64 16 32 64 16 32 64 16 32 64

Sh
all
ow

KMH 13.59 13.93 14.46 24.08∗ 23.56∗ 25.19∗ 32.12 33.29 35.78 59.12∗ 70.32∗ 67.62∗ 7

SphH 13.98 14.58 15.38 24.52∗ 24.16∗ 26.09∗ 25.81 30.77 34.75 52.97∗ 65.45∗ 65.45∗ 7

SpeH 12.55 12.42 12.56 22.10∗ 21.79∗ 21.97∗ 26.64 25.72 24.10 59.72∗ 64.37∗ 67.60∗ 7

PCAH 12.91 12.60 12.10 21.52∗ 21.62∗ 20.54∗ 27.33 24.85 21.47 60.98∗ 64.47∗ 63.31∗ 7

LSH 12.55 13.76 15.07 12.63∗ 16.31∗ 18.00∗ 20.88 25.83 31.71 42.10∗ 50.45∗ 66.23∗ 7

ITQ 15.67 16.20 16.64 26.71∗ 27.41∗ 28.93∗ 41.18 43.82 45.37 70.06∗ 76.86∗ 80.23∗ 7

De
ep

DH 16.17 16.62 16.96 - - - 43.14 44.97 46.74 - - - 7

DAR 16.82 17.01 17.21 - - - - - - - - - 7

DeepBit - - - 19.43 24.86 27.73 - - - 28.18 32.02 44.53 3

UTH - - - 28.66 30.66 32.41 - - - 43.15 46.58 49.88 3

HashGAN 29.94 31.47 32.53 44.65 46.34 48.12 91.13 92.70 93.93 94.31 95.48 96.37 7

Table 1: Image retrieval results (mAP and mAP@1000) of unsupervised hash functions
on CIFAR-10 and MNIST datasets, when the number of hash bits are 16, 32 and 64.
The usage of supervised pretraining is shown for each model using the tick sign.
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Figure 2: HashGAN architecture, including a generator (green), a discriminator (red)
and an encoder (blue), where the last two share their parameters in several layers
(red⊕blue=purple). The arrows on top represent the loss functions.

Dataset MNIST USPS FRGC STL-10
Model NMI ACC NMI ACC NMI ACC NMI ACC

Sh
all
ow

K-means 0.500 0.534 0.450 0.460 0.287 0.243 0.209∗ 0.284
N-Cuts 0.411 0.327 0.675 0.314 0.285 0.235 - -
SC-LS 0.706 0.714 0.681 0.659 0.550 0.407 - -
AC-PIC 0.017 0.115 0.840 0.855 0.415 0.320 - -
SEC 0.779 0.804 0.511 0.544 - - 0.245∗ 0.307
LDMGI 0.802 0.842 0.563 0.580 - - 0.260∗ 0.331

De
ep

NMF-D 0.152 0.175 0.287 0.382 0.259 0.274 - -
DEC 0.816 0.844 0.586 0.619 0.505 0.378 0.284∗ 0.359
JULE-RC 0.913 0.964 0.913 0.950 0.574 0.461 - -
DEPICT 0.917 0.965 0.927 0.964 0.610 0.470 0.303∗ 0.371∗
HashGAN 0.913 0.965 0.920 0.958 0.602 0.465 0.316 0.394

Table 2: Clustering performance of HashGAN and several other algorithms on four
image datasets based on accuracy (ACC) and normalized mutual information (NMI).

(a) 16 bits (b) 32 bits (c) 64 bits
Figure 3: Precision-Recall curves on CIFAR-10 database for HashGAN and five baselines with 16, 32, and 64 hash bits.


