

Unsupervised Deep Generative Adversarial Hashing Network

 ${\sf Kamran\ Ghasedi\ Dizaji}^1, {\sf Feng\ Zheng}^1,\ {\sf Najmeh\ Sadoughi}^1,\ {\sf Yanhua\ Yang}^2,\ {\sf Cheng\ Deng}^2,\ {\sf Heng\ Huang}^1}$

kag221@pitt.edu, feng.zheng@pitt.edu, najme.sadoughi@gmail.com, yanhyang@xidian.edu.cn, chdeng.xd@gmail.com, heng.huang@pitt.edu

1 Electrical and Computer Engineering Department, University of Pittsburgh, PA, USA

2 Xidian University, Xi'an, Shanxi, China

Challenges

- Unsupervised hashing methods either utilize shallow models with hand-crafted features as inputs, or employ deep architectures for obtaining both discriminative features and binary hash codes.
- The shallow hash functions suffer from hand-crafted features and dimension reductions techniques, and may not capture the non-linear similarities between real-world images due to their low capacity.
- The unsupervised deep hash functions have not shown satisfactory improvements against their shallow alternatives due to overfitting problem in lack of any supervisory signals.

Contributions

- We propose a novel framework for unsupervised hashing model by coupling a deep hash function and a generative adversarial network.
- We introducing a new hashing objective resulting in minimum entropy, uniform frequency, consistent, and independent hash bits for real images, regularized by the adversarial and collaborative loss functions on synthesized images.
- Achieving state-of-the-art results compared to alternative models on information retrieval and clustering tasks.

HashGAN Objective Function

General loss

$$\mathcal{L}_{total} = \mathcal{L}_{adv} + \mathcal{L}_{hash} + \mathcal{L}_{col}$$

Adversarial loss

$$\max_{\mathcal{D}} \ \mathbb{E}_{\mathbf{x} \sim P(\mathbf{x})} \left[\log(\mathcal{D}(\mathbf{x})) \right] + \mathbb{E}_{\mathbf{z} \sim P(\mathbf{z})} \left[\log(1 - \mathcal{D}(\mathcal{G}(\mathbf{z}))) \right]$$

Hashing loss

$$\min_{\mathcal{E}} - \sum_{i=1}^{N} \sum_{k=1}^{K} t_{ik} \log t_{ik} + (1 - t_{ik}) \log(1 - t_{ik}) + \sum_{i=1}^{N} \sum_{k=1}^{K} ||t_{ik} - \tilde{t}_{ik}||_{2}^{2}$$

$$+ \sum_{k=1}^{K} f_{k} \log f_{k} + (1 - f_{k}) \log(1 - f_{k}) + ||\mathbf{W}_{\mathcal{E}}^{L^{\top}} \mathbf{W}_{\mathcal{E}}^{L} - \mathbf{I}||_{2}^{2}$$

$$\text{independent bits}$$

$$\text{uniform frequency bits}$$

Collaborative loss

$$\min_{\mathcal{E}} \ \mathbb{E}_{\mathbf{z} \sim P(\mathbf{z})} [\| \mathcal{E}(\mathcal{G}(\mathbf{z})) - \mathbf{b}' \|_2^2]$$

Figure 1: Visualization of *HashGAN* discriminative representations for a query set on *MNIST* using *TSNE* projection. The real and synthesized data are indicated by colored and gray circles respectively. Some of the synthesized images are randomly shown from different parts of space.

	Dataset	CIFAR-10					MNIST						⊑	
	Dataset	mAP (%)			mAP@1000 (%)			mAP (%)			mAP@1000 (%)			Super. Pretrain
	Model	16	32	64	16	32	64	16	32	64	16	32	64	() LL
Shallow	KMH	13.59	13.93	14.46	24.08*	23.56*	25.19*	32.12	33.29	35.78	59.12*	70.32*	67.62*	X
	SphH	13.98	14.58	15.38	24.52*	24.16*	26.09*	25.81	30.77	34.75	52.97*	65.45*	65.45*	X
	SpeH	12.55	12.42	12.56	22.10*	21.79*	21.97*	26.64	25.72	24.10	59.72*	64.37*	67.60*	X
	PCAH	12.91	12.60	12.10	21.52*	21.62*	20.54*	27.33	24.85	21.47	60.98*	64.47*	63.31*	X
	LSH	12.55	13.76	15.07	12.63*	16.31*	18.00*	20.88	25.83	31.71	42.10*	50.45*	66.23*	X
	ITQ	15.67	16.20	16.64	26.71*	27.41*	28.93*	41.18	43.82	45.37	70.06*	76.86*	80.23*	X
Deep	DH	16.17	16.62	16.96	_	-	_	43.14	44.97	46.74	_	-	-	X
	DAR	16.82	17.01	17.21	_	-	_	_	-	-	_	_	-	X
	DeepBit	_	_	_	19.43	24.86	27.73	_	-	-	28.18	32.02	44.53	/
	UTH	_	-	-	28.66	30.66	32.41	_	_	_	43.15	46.58	49.88	✓
	HashGAN	29.94	31.47	32.53	44.65	46.34	48.12	91.13	92.70	93.93	94.31	95.48	96.37	X

Table 1: Image retrieval results (mAP and mAP@1000) of unsupervised hash functions on CIFAR-10 and MNIST datasets, when the number of hash bits are 16, 32 and 64. The usage of supervised pretraining is shown for each model using the tick sign.

Figure 2: *HashGAN* architecture, including a generator (green), a discriminator (red) and an encoder (blue), where the last two share their parameters in several layers (red⊕blue=purple). The arrows on top represent the loss functions.

	T _				5.0					
	Dataset	$ M \cap$	IIST	US	PS	FR	'GC	<i>STL-10</i>		
	Model	NMI	ACC	NMI	ACC	NMI	ACC	NMI	ACC	
	K-means	0.500	0.534	0.450	0.460	0.287	0.243	0.209*	0.284	
	N-Cuts	0.411	0.327	0.675	0.314	0.285	0.235	_	-	
<u>0</u>	SC-LS	0.706	0.714	0.681	0.659	0.550	0.407	_	-	
Shallow	AC-PIC	0.017	0.115	0.840	0.855	0.415	0.320	_	_	
S	SEC	0.779	0.804	0.511	0.544	_	_	0.245*	0.307	
	LDMGI	0.802	0.842	0.563	0.580	_	_	0.260*	0.331	
	NMF-D	0.152	0.175	0.287	0.382	0.259	0.274	_	_	
	DEC	0.816	0.844	0.586	0.619	0.505	0.378	0.284*	0.359	
eb	JULE-RC	0.913	0.964	0.913	0.950	0.574	0.461	_	_	
Deep	DEPICT	0.917	0.965	0.927	0.964	0.610	0.470	0.303*	0.371^{*}	
	HashGAN	0.913	0.965	0.920	0.958	0.602	0.465	0.316	0.394	

Table 2: Clustering performance of *HashGAN* and several other algorithms on four image datasets based on accuracy (ACC) and normalized mutual information (NMI).

Figure 3: Precision-Recall curves on CIFAR-10 database for HashGAN and five baselines with 16, 32, and 64 hash bits.